Spirent 원형 로고

University of Warwick Paves The Way to 5G Automotive Test Innovation


Blog - University of Warwick Paves The Way to 5G Automotive Test Innovation

5G Digital Twin technology driving advancements in connected car testing

5G Digital Twin Technology

In our industry, 5G is seemingly everywhere. But out in the real world, it’s a different story. That creates a challenge for R&D work being done today on the cars that will hit the road many years from now. These cars, many of them autonomous, will rely on 5G to power core functionality. In reality, there is limitations to actually testing 5G-based features and capabilities out on public roads today. But 5G Digital Twins, fully-functioning, emulations of next-gen networks, are changing this. In fact, at the end of 2019, Spirent and the University of Warwick jointly announced a major advancement on this front.

5G Digital Twin technology driving advancements in connected car testing

5G Digital Twin Network Emulation test

UK-based University of Warwick has long been known for its tightknit relationships with major automotive manufacturers via WMG (Warwick Manufacturing Group). Together, with Spirent, it has expanded this work to help carmakers understand how future vehicles will perform in the wireless network fast lane. In conjunction with the University’s Midlands Future Mobility (MFM) initiative, Spirent will deploy 5G Digital Twin technology that emulates 5G networks for testing connected vehicles in a controlled environment, within a 3xD drive-in simulator operated by WMG.

This work features the first all-software, emulated 5G Standalone Core Network dedicated to researching next-gen mobile use cases, including connected automated mobility (CAM), in almost unlimited testing.

5G connected car network test

In my previous blog, I touted the 5G Digital Twin’s role in supporting expansive testing without limitations. This is a critical capability. The latest standards call for billions of test miles driven before a vehicle is suitable for mass market rollouts. It’s a bar set so high, it’s simply not practical to conduct the testing entirely on real roads. Therefore, vehicles must be tested in simulation environments that accurately replicate the environments cars will eventually drive in.

“We want to be on every type of road and junction”

Dr. Matthew Higgins, associate professor at WMG, emphasizes that as a licensed testbed, automakers rely on MFM to help them accelerate connected and automated mobility roadmaps. As one of only four such testing facilities nationally, MFM is ready to support virtually any testing scenario in the lab. And when vehicles are ready, that testing will extend to hundreds of miles of real roadways that are part of the MFM initiative. Dr. Higgins is careful to point out that not all miles tested are created equal. In comprehensive testing scenarios, it’s not just about the volume of miles tested but the type of mile being tested.

Dr Matthew Higgins

In its 3xD drive-in simulator, MFM must be ready to test any scenario – whether parking or unique pedestrian scenarios, or what happens when vehicles encounter traffic-filled roundabouts or mixed lighting scenarios such as early morning or dusk. Increasingly, the testing requirements extend to mobile connectivity scenarios – particularly, 5G. Carmakers want to understand how vehicles will behave when connections are handed off between cells, when networks are crowded or when they’ve been hacked. They want to understand how different types of 5G connectivity impact performance. What role does distance from cells play in responsiveness? How can network slicing change performance dynamics?

While 5G Non-standalone networks are being deployed most often in these early days, MFM’s testing primarily makes use of 5G Standalone networks. After all, these are the networks likely to be most ubiquitous by the time the vehicles being tested today roll out in a few years.

Focus on data-driven outcomes

At the end of the day, all this testing comes down to actionable data. And driving billions of miles under every imaginable connectivity scenario certainly produces a lot of it. As our testing gets underway, we are eager to keep you up to date on some of the key insights and takeaways.

In the meantime, download our white paper on the 5G Digital Twin to learn more.

콘텐츠가 마음에 드셨나요?

여기서 블로그를 구독하세요.

블로그 뉴스레터 구독

Stephen Douglas
Stephen Douglas

시장 전략 부서장

Stephen은 기술적 방향, 혁신적인 솔루션, 시장을 선도하는 획기적 기술을 정의할 수 있는 Spirent의 전략 부서에서 일하며, 큰 차이를 만들어냈습니다. 이동통신 업계에서 거의 20년이 가까운 시간을 보낸 Stephen은 차세대 기술 혁신의 중심에 서 있으며, 다중 서비스 제공 업체, 스타트업, 1티어 OEM이 혁신과 변혁을 이루어낼 수 있도록 업계의 다양한 부문에서 기량을 보여주었습니다. Stephen은 혁신과 사업의 성공을 막는 이기주의(silo)를 해결하고, 타파하고, 그 의미를 모호하게 만들기 위해 심혈을 기울이며, 기술을 열렬히 믿는 신봉자입니다.